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Abstract- In this work we present several implementation
strategies answering to different classical problems in
multi-agent systems. The model under consideration consists
of a discrete-time dynamics multi-agent system in which
two agents are able to communicate when an algebraic
relation between their states is satisfied. As emphasized
in the literature, the connectivity of the communication
network is essential for global coordination objectives. Thus,
the primary goal of our methodology is to characterize the
controllers that preserve a given topology allowing the global
coordination. In a second step we choose the controller
appropriated to the main agreement objective by solving a
convex optimization problem associated to the minimization
of a well-chosen cost function. Examples concerning full or
partial consensus of agents with double integrator dynamics
illustrate the implementation of the proposed methodology.

Keywords- Multi-agent Systems; LMI; Consensus;
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I. INTRODUCTION

The research on multi-agent systems and decentralized
control received an increasing interest during the last
decade. This is certainly due to the fact that they found
many uses in applications going from biology and medicine
to transportation, communication and sociology [1]–[5].
The consensus problem has been studied under different
assumptions such as directed or undirected interaction
graph, connections affected or not by delays, discrete or
continuous, linear or nonlinear agent dynamics, fixed or
dynamic interaction graph, synchronized or desynchro-
nized interactions [6]–[12]. It is noteworthy that controlling
multi-agent systems in a decentralized manner offers great
opportunities for computation and communication cost re-
duction [7], [13], [14]. On the other hand the coordination
and performances of interconnected systems are related to
the network topology. Most of existing works assume the
connectivity of the interaction graph in order to guarantee
the coordination behavior. However, some works have been
oriented towards networks in which the global agreement
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cannot be reached and only local ones are obtained [15],
[16]. Others propose controllers that are able to maintain
the network connectivity in order to ensure the global
coordination [17]–[20].

The aim of this paper is to provide implementation
strategies for the theoretical tools developed in our previous
works [19], [20]. Precisely, we consider a multi-agent
system with discrete-time dynamics and a dynamic inter-
connection topology. Two agents are able to communicate
if an algebraic relation between their states is satisfied.
The connected agents are called neighbors. The agents
updates their state in a decentralized manner by taking into
account their neighbors state. A connection is preserved as
far as the algebraic relation is verified. Thus, we choose a
minimal number of interconnections ensuring the network
connectivity and making use of set theory [21], [22],
we design a decentralized control law that ensures the
satisfaction of the corresponding algebraic constraints.

As shown in [20], the condition ensuring the topology
preservation rewrites as a convex constraint that may be
posed in Linear Matrix Inequality (LMI) form, [23], [24].
Therefore, we not only proposed a new tool for decentral-
ized control but also an easy implementable one. It should
be noted that our procedure is quite flexible and, as we
shall see, additional global objectives can be addressed.
Precisely, we focus on the implementation of the topology
preservation, presented in [20], to tackle specific problems
concerning multi-agent systems. The subsystems compos-
ing the network are mobile agents moving on the plane and
whose communication capability is subject to constraints
on their distances. Different coordination tasks, as flocking,
consensus and predictive control, are considered and solved
employing the LMI conditions for avoiding the connections
loss. Numerical illustrative examples allow us to analyze
the results and to compare the different control strategies.

The paper is organized as follows. In Section II we
formulate the decentralized control problem under analysis.
Some LMI conditions for network topology preservation
are recalled in Section III. Control design strategies for full
or partial state consensus of identical systems with double-
integrator dynamics are discussed in Section IV. In Section
V we present some numerical examples illustrating the
control strategies proposed in section IV. Some conclusions
and remarks on further works are provided at the end of
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the paper.
Notation: The set of positive integers smaller than or

equal to the integer n ∈N is denoted as Nn, i.e. Nn = {x ∈
N : 1 ≤ x ≤ n}. Given the finite set A ⊆ Nn, |A | is its
cardinality. Given a symmetric matrix P ∈ Rn×n, notation
P > 0 (P ≥ 0) means that P is positive (semi-)definite. By
A† we denote the left pseudoinverse of the matrix A. Given
the matrix T ∈ Rn×m and N ∈ N, DN(T ) ∈ RnN×mN is the
block-diagonal matrix whose N block-diagonal elements
are given by T , while D(A,B, ...,Z) is the block-diagonal
matrix, of adequate dimension, whose block-diagonal ele-
ments are the matrices A,B, ...,Z. Given a set of N matrices
Ak with k ∈ NN , denote by {Ak}k∈NN the matrix obtained
concatenating Ak in column. Given a square matrix A,
denote with λmax(A) the maximal eigenvalue of A.

II. PROBLEM STATEMENT

Throughout the paper we consider a multi-agent system
with V ≥ 2 interconnected agents assumed identical. Let
us assume that each agent moves in a two dimensional
space and is able to select the variation of its velocity.
Modelling the input as a velocity variation or, equivalently,
the variations along the two Cartesian axis, the dynamics
of each i-th agent, with i ∈ NV , along the x axis is given
by {

px
i (k+1) = px

i (k)+ tvx
i (k),

vx
i (k+1) = vx

i (k)+ux
i (k),

(1)

where px
i is the position, vx

i the velocity, ux
i the control

input and t the sampling time. So, the overall dynamics of
the i-th agent along the x axis is given by a linear system
with matrices

Ā =

[
1 t
0 1

]
, B̄ =

[
0
1

]
where the sampling time t has been chosen equal to 0.05.
The dynamics along the y axis are clearly analogous. Then
the full dynamics of the i-th agent is

x+i = Axi +Bui, (2)

with
A =

[
Ā 0
0 Ā

]
, B =

[
B̄ 0
0 B̄

]
,

where the state is xi =[px
i (k), vx

i (k), py
i (k), vy

i (k)]
⊤ and the

input ui = [ux
i , uy

i ]
⊤.

The usual objectives of the control of multi-agent sys-
tems concern the achievement of cooperative tasks by
means of decentralized control laws, acting on every agent.
In order to pursue such collaborative tasks in a decen-
tralized way, the agents exchange some information. The
information available to every agent is supposed to be
partial, as only a portion of the overall system is assumed
accessible to every agent. We suppose that any agent has
access to the state of a neighbor only if a constraint on
the distance between them is satisfied. As the loss of the
communication network connectivity may hamper the sys-
tem to reach the global objective, some of such constraints
are required to be preserved. Then, the primary problem

underlying any cooperative task in the multi-agent context
is the connection topology preservation. Theoretical results
on this topic, presented in [20], are recalled hereafter and
applied in the following sections.

III. SET THEORY RESULTS FOR TOPOLOGY
PRESERVATION

In a general framework we can consider the dynamics of
the i-th agent is given by (2) for all i ∈NV , with A ∈Rn×n,
B ∈ Rn×m and where xi ∈ Rn is the state and ui ∈ Rm is
the control input of the i-th agent.

Let us suppose that the initial interconnection topology is
given by the graph G= (V ,E ) where the vertex set is V =
NV and the connecting edge set E ⊆ V ×V represents the
set of pairs of agents that satisfy a distance-like condition.
Precisely, given the real scalar r > 0, d ∈N with d ≤ n and
T ∈ Rd×n such that T T⊤ is invertible, the initial edge set
is given by

E = {(i, j) ∈ NV ×NV | ∥T (xi(0)− x j(0))∥2 ≤ r}.

The set of edges that must be preserved is denoted by
N ⊆ E . We suppose that every agent i knows the state of
the j-th one if and only if (i, j) ∈ N .

Definition 1: For all i ∈ V we define the set of connect-
ed neighbors of the i-th agent as

Ni = { j ∈ NV : (i, j) ∈ N }.
Given the set of connections N , the objective is to design
a decentralized control law ensuring that none of these
connections are lost. In other words, the aim is to design
the state-dependent control actions ui(k) independently
from u j(k), for all i, j ∈ NV and k ∈ N, such that every
connection in N is maintained.

As usual in multi-agent systems we consider the i-th
input to be the sum of terms proportional to the distances
between agent i and its neighbors. That is, denoting el,m =
xl − xm for all l,m ∈ NV , we define

ui = ∑
j∈Ni

Ki, j(xi − x j) = ∑
j∈Ni

Ki, jei, j. (3)

The design of each ui is reduced to the design of the
controller gains Ki, j chosen such that the link (i, j) is
preserved where the dynamics of the i j system results in

e+i, j =(A+BKi, j+BK j,i)ei, j+
k ̸= j

∑
k∈Ni

BKi,kei,k−
k ̸=i

∑
k∈N j

BK j,ke j,k,

(4)
for all i, j ∈ NV . It is not difficult to see that, in the
centralized case the dynamics of the error can be imposed
by an adequate choice ui, for all i ∈NV , provided that the
agents dynamics is stabilizable.

The dynamics of the i j system is given by the matrix
A+BKi, j +BK j,i if no perturbations due to the presence
of other agents are present. Such perturbations, which
complicate the decentralized control design, can be bound-
ed within a set depending on the radius r and on the
information on the neighbors common to the i-th and j-th
agents.
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Consider the sets

Ni, j = Ni ∩N j,
N̄i, j = Ni \ (Ni, j ∪{ j}),
N̄ j,i = N j \ (Ni, j ∪{i}),

(5)

then, Ni, j denotes the common neighbors of the i-th and
the j-th agents and N̄i, j the neighbors of the i-th one which
are neither j nor one of its neighbors, analogously for N̄ j,i.
We define the cardinalities

N = 2|Ni, j|+1, N̄ = |N̄i, j|+ |N̄i, j|,

where the indices are avoided here and in the following
definitions to improve the readability.

The problem addressed in this paper can be state as
follows.

Problem 1: Design a procedure to find at each step a
condition on the decentralized control gains Ki, j, with i, j ∈
NV such that the following algebraic relation is satisfied

∥Te+i, j∥2 < r, ∀(i, j) ∈ N , (6)

if the constraints

∥Tei,k∥2 ≤ r, ∀k ∈ ¯Ni, j,
∥Te j,k∥2 ≤ r, ∀k ∈ ¯N j,i,

(7)

hold.
In order to ease the presentation, we introduce different

notations for the controller gains.
Definition 2: Denote with Ei, j ∈RnN the vector obtained

concatenating ei, j with all ei,k and e j,k where k ∈ Ni, j.
Denote with Ǩi, j ∈Rm×n(N−1) the matrix obtained concate-
nating Ki,k and −K j,k where k∈Ni, j and with K̂i, j ∈Rm×nN̄

the vector obtained concatenating all Ki,k where k ∈ ¯Ni, j
and −K j,k where k ∈ ¯N j,i. We also define

∆ = T [A+BǨi, j, BǨi, j] DN(T )† ∈ Rd×dN ,

Γ = T BK̂i, j DN̄(T )
† ∈ Rd×dN̄ ,

Z = DN(T )Ei, j ∈ RdN ,

(8)

where Ǩi, j = Ki, j +K j,i.
We recall here an important contribution presented in

[20], namely the sufficient condition for the constraint (6)
to hold.

Theorem 1: Problem 1 admits solutions if there exists
Λ =D(λ1Id , ...,λN̄Id) with λk ≥ 0, for all k ∈NN̄ such that r2 − r2 ∑

k∈NN̄

λk 0 Z⊤∆⊤

0 Λ Γ⊤

∆Z Γ Id

> 0. (9)

Furthermore, any solution (∆,Γ) of the previous LMI
defines admissible controller gains for the Problem 1.

The quantity δ = ∑k∈NN̄
λk can be geometrically inter-

preted as a bound on the perturbation generated in the
i j dynamics by the non-common neighbors. Precisely, the
effect of the non-common neighbors can be modelled as
a perturbation on the i j system bounded by an ellipsoid
determined by T⊤T and of radius

√
δ r. Therefore the

condition δ < 1, implicitly imposed by (9), is necessary
to ensure the preservation of the connection (i, j).

IV. APPLICATIONS TO DECENTRALIZED
CONTROL OF MULTI-AGENT SYSTEMS

In this section we illustrate the application of our results,
published in [20] and recalled in Section III, for controlling
the multi-agent system presented in Section II. Different
strategies (based on optimal and predictive control) to
achieve the collaborative objectives are presented hereafter
and numerically implemented.

Denote px
i, j = px

i − px
j, vx

i, j = vx
i −vx

j, py
i, j = py

i − py
j, vy

i, j =
vx

i − vx
j and

ei, j = [px
i, j, vx

i, j, py
i, j, vy

i, j]
⊤ = x⊤i − x⊤j , (10)

and ui, j = [ux
i −ux

j, uy
i −uy

j]
⊤. The control inputs are given

by (3) and Definition 2 with feedback gains

Ǩi, j =

[
kpx

i, j kvx

i, j 0 0
0 0 kpy

i, j kvy

i, j

]
, (11)

for all (i, j)∈N . Once obtained a value for Ǩi, j, we define
the nominal selection Ki, j = K j,i = 0.5Ǩi, j for all (i, j) ∈
N .

Moreover, the following constraint on the norm of Ǩi, j
is imposed

Ǩ⊤
i, jǨi, j ≤ In, (12)

to limit the effect of the control of the i j nominal system
on the neighbors. Recall, in fact, that the perturbation on
the neighbors of the agents i and j depends on their states
and on the gains Ki, j and K j,i.

Remark 1: It is worth recalling that the i j system, with
(i, j)∈N , considered and analysed hereafter, is the gener-
ic model of connected agents. The overall system concerns
several analogous models, one for every pair of connected
agents, represented by the elements of N . Hence, several
distance constraints have to be maintained and several local
optimization problems to be solved.

A. Topology Preservation Constraint

We suppose that the distance between two agents must
be smaller than or equal to r to allow them to communi-
cate. Thus the topology preservation problem consists of
upper-bounding by r the euclidean distance between the
connected neighbors. The constraint on the state of the i j
system to preserve is

px
i, j(k)

2 + py
i, j(k)

2 ≤ r2. (13)

Notice that the effect of the inputs ux
i and uy

i at time k
has no influence on px

i and py
i at time k+1 (see (1)). Thus,

any algebraic condition involving the positions px
i , py

i of the
systems at k+ 1 would not depend on the control action
ux

i , uy
i at time k. From the computational point of view, ev-

ery constraint concerning only the agents positions, would
lead to LMI conditions independent on the variable Ǩi, j.
Then the results provided in Theorem 1 are not applicable
directly in this case for the state at time k+1. On the other
hand, the controls ux

i (k),u
y
i (k) affect the position (and the

velocity) at time k + 2 and a condition on the feedback
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gain Ǩi, j to ensure the preservation of the (i, j) connection
at time k+2 can be posed. The distance constraint can be
imposed on the states at k+2, as nothing can be done at
time k in order to prevent its violation at time k+1. Then
a constraint on ei, j(k) can be determined characterizing the
region of the state space such that px

i, j(k)
2 + py

i, j(k)
2 ≤ r2

and px
i, j(k+ 1)2 + py

i, j(k+ 1)2 ≤ r2 in terms of matrix T .
Since the former constraint does not involve the input, only
px

i, j(k+1)2 + py
i, j(k+1)2 ≤ r2 might be taken into account

for the control design.
Proposition 1: The condition (13) holds at time k+2 if

and only if we have that ∥Tei, j(k+1)∥2 ≤ r with

T =

[
1 t 0 0
0 0 1 t

]
. (14)

Proof: The region of the space of ei, j(k) such that
the topology constraint (13) is satisfied at k+ 1 is given
by px

i, j(k+ 1)2 + py
i, j(k+ 1)2 ≤ r2, which is equivalent to

∥Tei, j(k)∥2 ≤ r for T as in (14). Hence imposing that the
system error state belongs to such a region at k+1 implies
assuring that the distance between the agents i-th and j-
th is smaller than or equal to r at k + 2, preserving the
topology at k+ 2. Then px

i, j(k+ 2)2 + py
i, j(k+ 2)2 ≤ r2 if

and only if

∥Tei, j(k+1)∥2 = ∥T (Aei, j(k)+Bui, j(k))∥2 ≤ r,

with T as in (14).
Proposition 1, then, implies that the topology preserva-

tion constraint for time k + 2 can be expressed in terms
of ei, j(k) and the input ui, j(k). The results presented in
Theorem 1, with T as in (14), allow to characterize the sets
of feedback gains ensuring the satisfaction of the distance
constraint at k+2, for every pair of connected neighbors i
and j. Such set would depend on the current state ei, j(k)
and on the gains designed to compensate the errors and
enforce the topology preservation.

B. Relevant Multi-agents Applications

Among the local feedback gains which guarantee the
connection preservation, different selection criteria can be
applied, depending on the collaborative task to be achieved.
Hereafter three popular criteria are illustrated and analysed.

1) Full State Consensus: The first criterion is to select
the feedback gain, among those satisfying (9), to achieve
the full state agreement. In other words, the objective in
this case is to both steer all the agents at the same point
and align all the velocities without loosing any connection.
One possibility is to compute at any sampling instant the
matrix Ǩi, j minimizing a sum of nominal values of the
position distance at k + 2 and of the speed difference at
k+1. By nominal values we mean the values of positions
and speeds in absence of the perturbation on the i j system
due to the other agents. Then, given the positive weighting
parameters qp, qv ∈ R, the cost to minimize is

Qc(ei, j(k), Ǩi, j) = qp(px
i, j(k+2)2 + py

i, j(k+2)2)+

+qv(vx
i, j(k+1)2 + vy

i, j(k+1)2).
(15)

Proposition 2: Any optimal solution of the convex op-
timization problem

min
∆,Γ,Λ, Ǩi, j ,M

ei, j(k)⊤M⊤Mei, j(k)

s.t. (8),(9),(11),[
In Ǩ⊤

i, j
Ǩi, j Im

]
≥ 0,

(16)

with

M =


qp qpt 0 0
0 qv 0 0
0 0 qp qpt
0 0 0 qv

(A+BǨi, j), (17)

and T as in (14), minimizes the cost (15) subject to the
norm gain constraint (12) and the distance constraints (13)
at k+2.

Proof: From standard algebraic manipulation, it can be
proved that Qc(ei, j(k), Ǩi, j) = ei, j(k)M⊤Mei, j(k). From (8),
(9), and Proposition 1, any feasible solution of (16) assures
the distance constraints to hold at k + 2. Finally, (12) is
equivalent to the last LMI constraint in (16).

2) Partial State Consensus: flocking: An alternative ob-
jective, often considered in the framework of decentralized
control, is to steer a part of the state ei, j to zero, for all
(i, j) ∈ N . In particular, the problem of flocking consists
in designing a decentralized control such that the difference
between the speeds of every pair of connected agents
converges to zero, avoiding violations of the distance
constraints. Then, if the graph G = (V ,N ) is preserved
connected and the speed differences converge to zero, the
agents reach and maintain the flocking. For this purpose,
the cost to minimize is a measure of the difference between
neighbors speeds, for instance

Q f (ei, j(k), Ǩi, j) = vx
i, j(k+1)2 + vy

i, j(k+1)2. (18)

This is achieved by solving a convex optimization prob-
lem analogous to (16), as stated in the proposition below.
The proof is avoided since similar to the one of Proposition
2.

Proposition 3: Any optimal solution of the convex op-
timization problem (16) with

M =

[
0 1 0 0
0 0 0 1

]
(A+BǨi, j), (19)

and T as in (14), minimizes the cost (18) subject to the
norm gain constraint (12) and the distance constraints (13)
at k+2.

Clearly, changing opportunely the matrix M would per-
mit to regulate different part of the state of the i j system
and also any linear combination of the state.

3) Predictive Control: Finally, we present another in-
teresting optimization criterion. One of the most pop-
ular control technique suitable for dealing with control
in presence of hard constraints is the predictive control.
These control strategies exploit the prediction of the system
evolution and the receding horizon strategy to react in
advance in order to prevent the constraint violations and to
avoid the potentially dangerous regions of the state space.
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Moreover, the control input that would generate the optimal
trajectory, among the admissible ones, is usually computed
and applied. In general, the longer is the prediction horizon,
the higher is the capability of preventing unsafe regions
and constraint violations. Based on this idea, we propose
to optimize a measure of the future state position, in order
to react in advance and prevent the states to approach the
limits of the distance constraints. In particular we minimize
a measure of the nominal distance between the positions
of the i-th and j-th agents at time k + 3 in function of
the input gain at time k, that is (px

i, j(k + 2) + tvx
i, j(k +

1))2 +(py
i, j(k+2)+ tvy

i, j(k+1))2. The control horizon can
be extended to values higher than 3, but the predicted
state ei, j(k +N) would depend on the future inputs and
the cost would result in a non-convex function of Ǩi, j. A
simplifying hypothesis can be posed to obtain a suboptimal
control strategy but with greater prediction capability. Let
us denote the horizon Np ∈ N and suppose that only the
nominal control action ui, j(k) = Ǩi, jei, j(k) is applied, i.e.
ui, j(k + p) = 0 for p ∈ NNp . The minimization of the
nominal position at k+Np, i.e.

Qp(ei, j(k), Ǩi, j) = px
i, j(k+Np)

2 + py
i, j(k+Np)

2, (20)

leads to a suboptimal control with high predictive power.
Proposition 4: Any optimal solution of the convex op-

timization problem (16) with

M = T +(Np −1)t
([

0 1 0 0
0 0 0 1

]
+ Ǩi, j

)
, (21)

and T as in (14), minimizes the cost (20) subject to the
norm gain constraint (12) and the distance constraints (13)
at k+2.

The benefits of the prediction-based strategy will be
highlighted in the numerical examples section.

V. NUMERICAL EXAMPLES

Two numerical case of studies and different global
objectives are considered in this illustrative section. The
simulations have been performed in MATLAB. At every
time instant, the solution of the convex problem, based
on the LMI conditions for connection preservation, is
solved independently for each agent. Every connection
(i, j) is considered by the agents i and j leading to the
same LMI-constraint. The only information employed by
any agent is, as assumed above, the knowledge of the
states of the neighbors involved in the connections to be
preserved. Every agent computes and applies a feedback
control according to the LMI conditions, no information
interchange between agents is considered, although it could
and should in future works.

Example 1: Firstly, let us consider the problem of flock-
ing for a simple system consisting of three interconnected
agents. Suppose that the 2-nd agent is a common neighbor
of both the 1-st and the 3-rd one, which are not neighbors
each other. The distance bound assuring the connections

between the agents is r = 2. The initial states are

x1(0) =
[

2.43 1.215 0 0
]⊤

,

x2(0) =
[

1.215 0 −1.215 −1.8225
]⊤

,

x3(0) =
[

0 −0.486 0.243 0
]⊤

,

and then

e1,2 =
[

1.215 1.215 1.215 1.8125
]⊤

,

e3,2 =
[
−1.215 −0.486 1.458 1.8225

]⊤
.

The distances between the connected agents, the 12
system and the 23 one, are close to the boundary as seen
in Figure 1. The initial speeds are pushing the agents
away one of each others, towards the boundary of the
connection region. Although the 2-nd and the 3-rd agent
are very close to the constraint limit, the control succeeds
to reduce their relative speed and to stop their drift within
just few sampling times. The same happens with the speed
difference between the 1-st and 2-nd agent. Therefore, the
connection graph is kept and one gets a formation that
moves with the same speed with relative position distances
close to the connection limit, see Figure 2. Obviously,
increasing the initial distances between neighbors or the
initial velocities the control problem formulated in Section
IV-B.2 may not have solutions and the graph connectivity
is lost.
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Position error 12
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Fig. 1: Flocking: errors 12 and 32.
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Fig. 2: Flocking: trajectories.

Example 2: Consider now the six interconnected agents
with the initial conditions given in [25] and connected by
the minimal robust graph computed in the same work.
That is: N = {(1,2), (2,3), (3,4), (4,5), (5,6)}, r = 3.2
and initial conditions:

x1(0) = [−4 − v0 3 0]⊤ , x6(0) = [4 v0 3 0]⊤ ,

x2(0) = [−2 − v0 2 0]⊤ , x5(0) = [2 v0 2 0]⊤ ,

x3(0) = [−1 − v0 0 0]⊤ , x4(0) = [1 v0 0 0]⊤ ,

where v0 is used as a parameter to analyze the maximal
initial speed that may be dealt with by different control
strategy. It is noteworthy that, as shown in [25], for
the classical consensus algorithm the preservation of the
minimal robust graph is guaranteed for a critical speed
value vc ≃ 0.23. Nevertheless, it is numerically shown that
the sufficient condition is conservative since for v0 = 1.5vc
(generating approximately a 4 times higher global velocity
disagreement) the robust graph is not broken. We also
note that the classical consensus algorithm is not able to
preserve the connectivity when the global disagreement is
5 times superior to the one guaranteeing the consensus (i.e.
v0 > 2.1vc).

In the sequel, we show that our design allows to increase
considerably the initial speed value (and consequently the
initial global disagreement) avoiding the loss of connec-
tions. Let us first give the initial error vectors between the
states of the neighbors:

e1,2(0) = [−2 0 1 0]⊤, e5,6(0) = [−2 0 −1 0]⊤,
e2,3(0) = [−1 0 2 0]⊤, e4,5(0) = [−1 0 −2 0]⊤,

e3,4(0) = [−2 −2v0 0 0]⊤.

A. FLOCKING

The control problem formulated in Section IV-B.2 has
admissible solutions for v0 = 19vc and the connection
between the third and the fourth agent is lost for v0 = 20vc
as shown in Figure 4. It is worth noting that the control
acts like springs between agents’ velocities (compare the
bottom of Figures 3, 4 and 5). First, the control cancels
the speed difference between neighbors with opposite
velocities creating a speed disagreement in both symmetric
branches of the graph. Next, it cancel the disagreement
between 2-nd and the 3-rd agent and between the 4-th

and 5-th one, mimicking a gossiping procedure where the
choice of active communication link is given by the error
between neighbors speeds. Doing so, either the flocking
is reached before the connectivity is lost, or the graph
splits into two groups that will independently agree to two
different velocity values.
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Fig. 3: Flocking: trajectories and errors of the 12 system.

The performances can be improved by heuristics. For
instance, requiring to maintain an euclidean distance in-
ferior to 3.1 even though the connection bound is 3.2.
The flocking is reached for v0 = 20vc, see Figure 6. It
is interesting to note that the control action is not able to
maintain the error 34 inferior to 3.1 but once the constraint
is violated (since the agents are still connected r = 3.2)
the priority is to minimize the euclidean distance in order
to respect the constraint. Notice how the regularity of the
behaviour is lost after the constraint violation, at time 0.55.

B. Full State Consensus

The control problem formulated in Section IV-B.1 with
qx = 10, qv = 1 has admissible solutions for v0 = 23vc as
shown in Figure 7.

C. Predictive Control Strategies

The control problem formulated in Section IV-B.3 with
Np = 3 works for v0 = 21vc but the trajectories are far from
ideal. The behaviour is largely improved with Np = 21, see
Figure 8 representing the trajectories and the time evolution
of the 34 dynamics for v0 = 28vc. Notice how the position
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Fig. 4: Flocking: errors of the 23 and the 34 systems.
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Fig. 5: Flocking: errors of the 45 and the 56 systems.

error of the critical system, the 34, approaches the bound
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Fig. 6: Flocking: trajectories and errors of the 34 system.
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Fig. 7: Consensus: trajectories and errors of the 34
system.
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avoiding the constraint violation, also for an initial speed
much higher than those used for the other approaches,
i.e. v0 = 28vc. Furthermore, the evolutions and trajectories
present a much smoother and regular behaviour. All these
desirable properties are due to the predictive capability of
the approach which permits the control to react to possible
violations and to prevent undesired situations in advance.
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Fig. 8: Predictive control: trajectories and errors of the 34
system.

VI. CONCLUSION AND FURTHER WORKS

In this paper we presented the results obtained by
applying LMI-based conditions for topology preservation
to a multi-agent system. In particular, a common multi-
agent framework has been considered, namely a system
composed by several moving agents with limited com-
munication capability. The LMI-conditions demonstrated
to allow the connectivity preservation, crucial issue in
cooperative control. At the same time, different convex
optimization problems have been posed in order to pursue
several classical objectives in the multi-agent context, as
consensus, flocking and predictive control. The results
obtained are proved to improve consistently those achieved
with analogous techniques.

Note that the main applications provided in the paper
concern fleets of autonomous vehicles. Thus, the size of
this associated network does not represent and obstacle
for the numerical treatments by LMIs. Moreover, we can
choose the network to be preserved as a very sparse one.

Consequently, the number of low order LMIs to be solved
is of the same order as the network size.

As possible further developments we are considering
the design of other control strategies based on the topol-
ogy preservation conditions, in particular the closed-loop
predictive control, and their application to real-time multi-
agent systems. Also the extension of the results to the case
of nonlinear systems deserves to be considered.
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